NSK

Aquecedor Indutivo
 EHP MN08

SUMÁRIO

1. APRESENTAÇÃo 4
2. VANTAGENS 4
3. SEGURANÇA 5
3.1 SIMBOLOGIA 5
4. INFORMAÇõES DO EQUIPAMENTO 6
4.1 AQUECEDOR INDUTIVO EHP MN08 6
4.2 RECOMENDAÇÕ̃ES PARA INSTALAÇÃ0 DO EQUIPAMENTO 7
4.2.1 MOVIMENTAÇÃO E POSICIONAMENTO 7
4.2.2 TABELA DE ESPECIFICAÇÕES 7
4.2.3 INSTALAÇÃO ELÉTRICA 7
4.3 RECOMENDAÇÕES DO EQUIPAMENTO 8
4.3.1 IMPORTANTE 9
4.3.2 DILATAÇÃO TÉRMICA 9
4.3.3 FUNÇÕ̃ES DO PAINEL 10
4.3.4 SEQUÊNCIA OPERACIONAL PARA AQUECIMENTO COM CONTROLE DE TEMPERATURA 11
4.3.5 SEQUÊNCIA OPERACIONAL PARA AQUECIMENTO COM CONTROLE DE TEMPO 12
5. POSSÍVEIS FALHAS 14
5.10 EQUIPAMENTO NÃO LIGA 14
5.20 EQUIPAMENTO NÃO AQUECE POR TEMPERATURA 14
5.3 POSSÍVEIS FALHAS DE COMANDO NA PLACA. 14
6. DESMAGNETIZAÇÃO 14
7. INFORMAÇõES SOBRE SEGURANÇA E MANUTENÇÃO 14
7.1 CARACTERÍSTICAS DE SEGURANÇA. 14
7.2 ANÁLISE DE RISCOS 15
7.2.1 EQUIPAMENTOS DE PROTEÇÃO INDIVIDUAL RECOMENDADOS 16
7.3 CUIDADOS E ADVERTÊNCIAS NA MANUTENÇÃO 16
7.3.1 MANUTENÇÃ0 PREVENTIVA 16
8. LISTA DE PEÇAS PARA REPOSIÇÃO 17
9. GARANTIA 18
10. MODELO DE ESQUEMA ELÉTRICO 19

1. APRESENTAÇÃO

0 Aquecedor Indutivo EHP MN08 tem como principal funçāo o aquecimento de peças em forma de anel - rolamentos, engrenagens, polias e buchas - que necessitam de dilataçāo do diâmetro interno para que sejam montadas. 0 princípio de funcionamento do Aquecedor Indutivo EHP MN08 pode ser comparado ao de um transformador. A tensāo e corrente elêtrica, que circulam nas espiras da bobina de induçāo, induzem uma baixa tensāo, ou seja, alta intensidade de corrente elētrica na peça. Como a peça se comporta como uma bobina de uma espira só, a alta intensidade de corrente gera calor apenas na peça. Uma vez que o calor é gerado apenas na peça, todos os componentes do aquecedor permanecem frios.

0 funcionamento do aquecedor é controlado pelo sistema eletrônico interno (operado em extra-baixa tensāo) em qualquer um dos dois modos (tempo/temperatura). Sendo este ûnico e exclusivamente responsåvel por chavear eletronicamente o disparo do Tiristor de módulo responsãvel pela "liberaçāo" da energia elétrica para a bobina de indução tendo por consequēncia o aquecimento da peça. 0 aquecimento sobre hípótese alguma será iniciado automaticamente quando o equipamento for plugado à rede de alimentaçāo e/ou o disjuntor geral for acionado. 0 inicio do aquecimento será sempre realizado através do botāo "LIGA" localizado no painel de operaçāo do equipamento, o qual deve ser acionado intencionalmente pelo operador do equipamento.

2. VANTAGENS

- Pode ser usado tanto para rolamentos blindados quanto para rolamentos normais;
- É adequado para expansão de qualquer peça metálica em forma de anel;
- Aquece a peça de maneira uniforme e controlada;
- Elimina danos que possam ocorrer durante o processo de montagem da peça;
- Aumenta a vida útil do rolamento, pois expande o anel, reduzindo, deste modo, qualquer interferência mecanica que normalmente ocorra durante a montagem;
- Possibilita a montagem da peça em qualquer local devido à facilidade de transporte do aparelho;
- Reduz o tempo de montagem;
- Apresenta baixo consumo de energia;
- Simplicidade de manuseio;
- Oferece alta segurança em operação (sem risco de incêndio);
- Nāo apresenta efeitos nocivos ao meio ambiente.

3. SEGURANC̣A

Os cuidados de segurança existentes neste manual devem ser seguidos, pois indicam uma situaçāo de risco que, se nāo for evitada, pode resultar em danos para o operador.

3.1 SIMBOLOGIA

As mensagens a seguir se enquadram nos riscos e recomendaçōes de segurança do equipamento:

4. INFORMAÇÕES DO EQUIPAMENTO

0 princípio de funcionamento do Aquecedor Indutivo EHP MN08 pode ser comparado ao de um transformador. A tensāo e corrente elêtrica, que circuiam Tas espiras da bobina de induçāo, induzem uma baixa tensāo, ou seja, alta intensidade de corrente elétrica na peça. Como a peça se comporta como uma bobina de uma espira só, a alta intensidade de corrente gera calor apenas na peça. Uma vez que o calor é gerado apenas na peça, todos os componentes do aquecedor permanecem frios.

0 funcionamento do aquecedor é controlado pelo sistema eletrōnico interno (operado em extra-baixa tensāo) em qualquer um dos dois modos (tempo! temperatura). Sendo este única e exclusivamente responsável por chavear eletronicamente o disparo do Tiristor de módulo responsável pela "liberaçāo" (da energia elétrica para a bobina de induçāo tendo, por consequência, o aquecimento da peça. 0 aquecimento sobre hipótese alguma irá iniciar automaticamente quando o equipamento for plugado à rede de alimentação. 0 inicio do aquecimento será sempre realizado através do botāo "LIGA" localizado no painel de operaçāo do equipamento, ou acionamento da chave geral, o qual deve ser acionado intencionalmente pelo operador do equipamento.

4.1 AQUECEDOR INDUTIVO EHP MN08

0 Aquecedor Indutivo EHP MN08 foi desenvolvido especialmente para aquecer rolamentos e pequenas engrenagens. Acompanham, junto ao aquecedor, 103 (trēs) bastōes de aquecimento.

Segue abaixo tabela de dimensōes dos bastōes e dos diâmetros das peças utilizadas:

Dimensōes dos bastōes (mm)	12×12	20×20	40×40
Mínimo/Máximo diâmetro interno da peça (mm)	20 a 30	30 a 45	60 a 80

[^0]A placa eletrônica digital microprocessada NSK tem as seguintes funçōes:

- Controle de temperatura;
- Controle de tempo;
- Habilitar/desabilitar aquecimento.
4.2 RECOMENDAÇÕES PARA INSTALAÇÃO DO EQUIPAMENTO

Neste documento estāo listadas as necessidades para instalação do Aquecedor Indutivo EHP MN08.

4.2.1 MOVIMENTAÇÃO E POSICIONAMENTO

Deve ser mantido o devido cuidado na movimentação e posicionamento do equipamento, aconselhamos que seja transportado por meio das alças de movimentação localizada na lateral do equipamento, sendo que o local para destinação do equipamento já deve estar preparado para este. De acordo com o item 12.6 da Norma NR12, os locais de instalação de máquinas e equipamentos e as áreas de circulaçāo devem ser devidamente demarcados e em conformidade com as normas técnicas oficiais.

4.2.2 TABELA DE ESPECIFICAÇÕES

Característica	Especificação
Tensāo (indicar tensāo desejada)	110V / 220V
Peça a ser aquecida	20 a 80 mm de diâmetro interno, diâmetro externo até 160 mm
Largura Máxima da Peça	35 mm
Controle de tempo	1 a 10 minutos
Controle de temperatura	Até $260^{\circ} \mathrm{C}$ com sonda magnética
Potência instalada	2,5 kVA em 220V-1,5kVA em 110V.
Material de carcaça	Carcaça em aço, tampa em aço inoxidável com pintura microtexturizada a pó
Bastōes de aquecimento (incluso 3)	$12 \times 12 \times 120 \mathrm{~mm} ; 20 \times 20 \times 120 \mathrm{~mm}$; e 40×40x120mm
Peso do aquecedor com bastōes	12 kg
Dimensōes do aquecedor ($\mathrm{L} \times \mathrm{A} \times \mathrm{P}$)	$140 \times 230 \times 270 \mathrm{~mm}$
Fusível de comando de proteção	20A
Desmagnetização automática	Único equipamento nacional com desmagnetizaçāo igual a três segundos e magnetismo residual máximo de $1,24 \mathrm{~A} /$ cm , conforme laudo de desmagnetizaçāo emitido pelo CEPEL/RJ.

4.2.3 INSTALAÇÃ0 ELÉTRICA

A rede elétrica de alimentação do aquecedor deverá estar devidamente aterrada e com a tomada conforme o plug do cabo de alimentaçāo. Na parte traseira do aquecedor se encontra um fusivel reserva para proteçāo da alimentação de comando $(3,3 \mathrm{Vcc})$ da placa eletrônica.

4.3 RECOMENDAÇÕES DO EQUIPAMENTO

Atenção

Pessoas portadoras de marca-passo ou relógio analógico deverão ficar afastadas à distância mínima de 5 metros do aquecedor indutivo quando este estiver ligado, por causa do campo magnético que se forma.

CUIDADO
USE
USE
WITITI.

Não se esqueça de usar luvas de proteção para a retirada da peça após o aquecimento. Risco de queimadura.

CUIDADO

Delipue tutamede
 WIIIIII

Nāo se esqueça de desligar o equipamento antes de efetuar limpeza ou manutençāo.

Nāo aproximar ou fixar na estrutura do aquecedor qualquer dispositivo metálico, pois poderá colocar os isolantes em curto-circuito.

Nunca deverá ser ligado o aquecedor indutivo sem os bastōes de aquecimento, pois provocará sobrecarga.

Precauções

Utilizar apenas os rolamentos com os tamanhos especfficos e suas devidas temperaturas solicitadas.
Aconselhamos $120^{\circ} \mathrm{C}$.

Para uma maior precisão da leitura da temperatura da peça pelo sensor magnético do aquecedor, é essencial o uso de pasta térmica na área de contato do sensor com a peça, a cada utilização. Ao utilizar o sensor magnético, limpar e retirar as limalhas do imā.

0 controlador de temperatura da placa eletrónica está calibrado para a utilização de acordo com o nosso equipamento. Ele não poderá ser utilizado para outras aplicaçōes. Consulte-nos sobre qualquer anormalidade, mesmo após a vigencia da garantia.

Evitar golpes mecanicos durante o manuseio dos bastōes e do núcleo.

Nāo retirar a fita adesiva na parte superior do núcleo do aquecedor e dos bastōes de aquecimento, pois servem para evitar oxidaçōes e ruldos.

4.3.1 IMPORTANTE

0 Aquecedor Indutivo EHP MN08 está dimensionado para aquecer peças com o diâmetro interno de 20 mm a 80 mm , com diâmetro externo até 160 mm e largura até 35 mm ;

Desmagnetizaçāo: o Aquecedor Indutivo EHP MN08 possui sistema eletrônico de desmagnetizaçāo automática no final do ciclo de aquecimento, que será realizado em 3 segundos;

Temperatura permitida nos rolamentos: 0 aquecedor indutivo trabalhará preferencialmente com temperatura de $120^{\circ} \mathrm{C}$ para rolamentos. Acima disto, 0 rolamento sofrerá danos.

4.3.2 DILATAÇÃO TÉRMICA

Dilatação térmica é a variação dimensional de corpos em estado sólido em função da diferença de temperatura, e consiste na variação considerável de apenas uma dimensão, no caso, o diametro (Ø). Aplica-se, por exemplo, em dimensionamento de tempos de montagens de engrenagens, rolamentos e cubos. Ao considerarmos um rolamento com diâmetro interno, diâmetro externo e largura (figura 1), à uma temperatura inicial (gi), quando esta temperatura é aumentada até uma temperatura final (øf), sendo esta maior que a temperatura inicial, observa-se que o anel passa a ter um diámetro interno final (Øf) maior que que o diametro interno inicial (Øi).

PEÇA EM TEMPERATURA AMBIENTE

PEÇA EM TEMPERATURA DE MONTAGEM

Figura 1 - Rolamento

Com isso, é possivel concluir que a dilatação linear ocorre de maneira proporcional à variação de temperatura e ao diámetro inicial. Ao serem analisadas peças de dimensōes iguais, mas feitas de um material diferente, sua variação de comprimento seria diferente, isto porque a dilatação também leva em consideração as propriedades do material com que a peça é feita. Esta é a constante de dilatação térmica proporcional da expressão, chamada de consłante de dilatação térmica (o).

0 cálculo para descobrir a variação do dimensional (Δ Ø) em função da temperatura está demonstrado na equação 1.

$$
\Delta \emptyset=\emptyset i * \alpha *(\theta f-\theta i)
$$

Para maior praticidade, as variáveis são reajustadas chegando à equação 2, onde pode ser obtido o diâmetro final através da temperatura alcançada.

$$
\emptyset f=\emptyset i(1+\alpha *(\theta f-\theta i))
$$

Ou de forma inversa (equaçāo 3), onde é obtida a temperatura necessária para chegar à dilatação desejada, ou diâmetro final.

$$
\theta f=\frac{\emptyset f-\emptyset i}{\emptyset i * \alpha}+\theta i
$$

VARIÁVEL	DESCRIÇÃO	UNIDADE
$\boldsymbol{\theta i}$	Temperatura inicial ou ambiente	${ }^{\circ} \mathrm{C}$
$\boldsymbol{\theta f}$	Temperatura final ou de montagem	${ }^{\circ} \mathrm{C}$
$\boldsymbol{\varnothing i}$	Diâmetro inicial	mm
$\boldsymbol{\text { ff }}$	Diâmetro final (após dilatação térmica)	mm
$\boldsymbol{\alpha}$	Constante de dilatação térmica	$1^{\circ} \mathrm{C}$

MATERIAL	CONSTANTE DE DILATAÇÃO TERMICA (1/C)
AÇO	$12,5 \times 10^{-8}$
FERRO FUNDIDO	$10,5 \times 10^{-8}$
ALUMÍNIO	25×10^{-8}

É importante salientar que a temperatura obtida cai gradativamente após o término do aquecimento, devido à troca de calor com o meio externo. Por este motivo, dependendo da toleråncia dimensional da peça, da distância e tempo entre o aquecimento e a montagem, deve ser considerado um valor de temperatura maior, para garantir que no momento da montagem a temperatura esteja ideal.

4.3.3 FUNÇÕES DO PAINEL DE COMANDO

 (2) Botāo Seleçāo Tempo/Temperatura
(3) Regulador de Tempo/Temperatura
(4) LEDs de Falhas

4.3.4 SEQUÊNCIA OPERACIONAL PARA AQUECIMENTO COM CONTROLE DE TEMPERATURA

Ligar na tomada o Aquecedor Indutivo EHP MN08. IMPORTANTE: este procedimento nāo irá iniciar o ciclo de aquecimento;

Ligar chave geral na lateral;

Selecionar o bastāo de aquecimento (conforme a tabela abaixo) adequado para o diämetro da peça a ser aquecida;

	12×12	20×20	40×40
Dimensōes dos bastōes (mm)	20 a 30	30 a 45	60 a 80
Mf́nimo/Máximo diametro interno da peça (mm)			

Posicionar a peça no centro do bastão, posicioná-los sobre o núcleo do aquecedor evitando golpes mecannicos;

Posicionar o sensor de temperatura magnético no anel interno da peça a ser aquecida. Passar pasta térmica no sensor para melhor leitura da temperatura;

Selecionar aquecimento por controle de temperatura (LED apagado);

Regular a temperatura desejada;

Acionar o botão "LIGA". 0 ciclo de aquecimento será iniciado θ, ao atingir a temperatura selecionada, o aquecimento será finalizado automaticamente;

Retirar a peça aquecida utilizando luvas de protecāo térmica e efetuar a montagem no eixo;

Caso necessite interromper o processo de aquecimento, pressionar o botāo "DESLIGA".

0 aquecedor indutivo tem capacidade de alcançar até $260^{\circ} \mathrm{C}$, entretanto a máxima temperatura para rolamentos é de $120^{\circ} \mathrm{C}$. A utilização da pasta térmica do sensor magnético proporciona leitura com maior precisāo.

4.3.5 SEQUÊNCIA OPERACIONAL PARA AQUECIMENTO COM CONTROLE DE TEMPO

Ligar na tomada o Aquecedor Indutivo EHP MN08.
IMPORTANTE: este procedimento nāo irá iniciar o ciclo de aquecimento;

NsK

Selecionar o bastāo de aquecimento (conforme a tabela abaixo) adequado para o diâmetro da peça a ser aquecida;

Dimensōes dos bastōes (mm)	12x12	20x20	40x40
Mínimo/Máximo diâmetro interno da peça (mm)	20 a 30	30 a 45	60 a 80

Selecionar e posicionar a peça no centro do bastāo. Posicioná-los sobre o núcleo do aquecedor evitando golpes mecánicos;

Selecionar aquecimento por controle de tempo (LED aceso);

Selecionar e posicionar a peça no centro do bastão. Posicioná-los sobre o núcleo do aquecedor evitando golpes mecânicos;

Acionar o botão "LIGA". 0 ciclo de aquecimento será iniciado e ao atingir a tempo selecionado o aquecimento será finalizado automaticamente;

Retirar a peça aquecida usando luvas protetoras e efetuar a montagem no eixo;

Caso necessite interromper o processo de aquecimento,
pressionar o botāo "DESLIGA".

5. POSSÍVEIS FALHAS

Os procedimentos descritos a seguir somente podem ser realizados por profissionais devidamente treinados e habilitados, u sando todos os EPl's obrigatórios.

5.1 0 EQUIPAMENTO NÃO LIGA

Verificar se há tensão no sistema elétrico. Se constatado que há tensão e mesmo assim o aquecedor não funciona, verificar se o fusivel de vidro da entrada da alimentação esta queimado.

5.2 POSSÍVEIS FALHAS DE COMANDO NA PLACA

CAUSA	SOLUÇÃO
FALHA NO SENSOR	Verificar se o sensor ou o cabo está danificado. Entre em contato com a NSK Equipamentos.
SOBREAQUECIMENTO	Ao atingir a temperatura maior que $80^{\circ} \mathrm{C}$, , equipamento irá desarmar e o LED iŕa acender. Não será possivel ligar o equipamento até a temperatura do nácleo diminuir. Após a temperatura baixar, será possivel o uso do equipamento novamente.

6. DESMAGNETIZAÇÃO

A desmagnetização é realizada através de um circuito eletrônico tiristorizado, sendo automática após o término do ciclo de aquecimento, seja via temperatura ou via tempo. Possui um tempo de trés segundos para desmagnetização e magnetismo residual máximo de $1,24 \mathrm{~A} / \mathrm{cm}$, conforme relatório de ensaio " C " n. ${ }^{\circ}$ 281/91, emitido pelo Centro de Pesquisas de Energia Elétrica - CEPEL, Rio de Janeiro - RJ. A desmagnetização é um processo de extrema importáncia e somente pode ser realizado por módulo Tiristor.

7. INFORMAÇÕES SOBRE SEGURANÇA E MANUTENÇÃO

Para garantir a segurança dos operadores, a correta instalação e o funcionamento do equipamento, é necessário que se coloque em prática todas as orientaçōes deste manual.

7.1 CARACTERÍSTICAS DE SEGURANÇA

0 Aquecedor Indutivo EHP MN08 é equipado com os seguintes recursos de segurança:

- Proteção automática contra superaquecimento;
- Proteção contra sobrecorrente;
- Proteção contra curto-circuito;
- No modo temperatura, o aquecedor desliga se a sonda de temperatura nāo registrar um aumento de $1^{\circ} \mathrm{C}$ a cada 45 segundos.

7.2 ANÁLISE DE RISCOS

A análise de riscos abaixo caracteriza os riscos potenciais, as medidas de prevenção existentes no equipamento de acordo com normas de segurança e medidas complementares recomendadas.

	RISCOS	CAUSA	EFEITO	CONTROLES E DEFESAS EXISTENTES	CONTROLES E DEFESAS COMPLEMENTARES*
$\begin{aligned} & \mathscr{O} \\ & \frac{S}{0} \\ & \frac{0}{4} \end{aligned}$	choque ELÉTRICO	Contato acidental com partes energizadas	- Queimaduras - Risoos oardiacos	- Chave geral - Identi ioação de partes energizadas - Dispositivo contra sobrecorrente - Dispositivo de sobretensāo - Componentes energizados mantidos permanentemente fechados por meio de proteg̣ão fixa	- Uso de EPI's (Equipamento de Proteģāo Individual) - Abertura do equipamento autorizada somente por pessoas treinadas e habilitadas oonforme Norma NR10 - Treinamento adequado aos operadores e técnicos de manutençảo - Elaborar Procedimentos de Trabalho a nivel gerencial e de execuģão de serviços - Vedado o uso de adornos pessoais nos trabalhos oom instalaçōes elétricas ou em suas proximidades - Adequação das instalaçōes elétrioas - Uso de ferramentas de trabalho adequadas
	ALTA TEMPERATURA	Superficies aqueoidas	- Queimaduras - Sensaçāo de dor	- Identificação de peģa a ser aquecida para dilataçāo térmioa	- Uso de EPI's (Equipamento de Proteģāo Individual) - Treinamento adequado aos operadores e técnicos de manutençảo - Elaborar Procedimentos de Trabalho a nivel gerencial e de execup̧ão de serviços - Vedado o uso de adornos pessoais nos trabalhos oom instalaçōes elétricas ou em suas proximidades

RISCO DE CHOQUE ELÉTRICO

RISCO DE TEMPERATURA EXTREMA NA PEÇA AQUECIDA

[^1]

7.2.1 EQUIPAMENTOS DE PROTEÇÃO INDIVIDUAL RECOMENDADOS

É recomendado que operadores e técnicos de manutenção utilizem EPI's (Equipamentos de Proteção Individual) adequados ao trabalho e com CA (Certificado de Aprovaçāo).

Óculos de Proteção

Luvas de Proteção

Térmica Sapatos de Segurança

7.3 CUIDADOS E ADVERTÊNCIA NA MANUTENÇÃO

Para efetuar a manutenção do Aquecedor Indutivo EHP MN08, 0 profissional da área de manutenção, devidamente treinado e habilitado, deverá:

- Retirar o plug do equipamento da energia;
- Soltar os parafusos da tampa de proteção.

A abertura de painéis energizados deve ser feita somente por técnicos de manutençāo com certificaçāo NR10 e usando todos os EPI's obrigatórios.

7.3.1 MANUTENÇÃ0 PREVENTIVA

A manutenção preventiva visa à correção de falhas e avarias do equipamento antes mesmo que elas aconteçam. Isso evita prejulzos e riscos de interrupção da produção.

- Verificar o estado geral do equipamento, aconselhamos a cada semana efetuar uma limpeza geral externa e inspecionar diariamente o estado do equipamento, proceder esta limpeza com o equipamento desligado com auxllio de ar comprimido e estopas, evitando o uso de materiais abrasivos;
- Manter a área de trabalho e o equipamento limpos são requisitos que aumentarāo a vida útil do mesmo;
- Ao efetuar a limpeza interna, é recomendado o uso de um pincel limpo e seco de cerdas finas para a eliminação do pó e residuos do circuito eletronico, para eliminar qualquer vestigio de sujeira e pequenas oxidaçōes utilizar "limpa-contato", um produto para a limpeza de contatos de componentes eletrônicos. Lembre-se sempre de usar uma pulseira "antiestática" para evitar danos decorrentes do manuseio indevido das placas. Nos demais componentes internos, efetuar a limpeza suavemente com um pano macio umedecido apenas com álcool isopropllico;
- Antes de fechar a tampa do painel, verificar se todos os cabos do chicote estão devidamente conectados;
- Observar se o cabo de alimentação nāo está danificado, e se está posicionado no seu lugar correto;
- Verificar se o núcleo ou bastōes de aquecimento não estão danificados;
- Proteger o equipamento de ambientes sujos, úmidos e da presença de materiais corrosivos;
- Caso a fita da parte superior do núcleo sair, providenciar uma nova fita;
- Verificar se os bastōes de aquecimento não estão abertos, se o núcleo não está batido ou amassado. Caso esteja, entre contato com a assistência técnica.

8. LISTA DE PEÇAS PARA REPOSIÇÃO

Lista de peças de reposiçāo do Aquecedor Indutivo EHP MN08:

CÓDIGO	DESCRIÇÃO
BEA.0020	PLACA NSK EHP MN08
DCD.0105	BASTĀO DE AÇO SILÍCIO GNO 12X12X120 MM
DCD.0106	BASTĀO DE AÇO SILÍCIO GNO 20X20X120 MM
DCD.0107	BASTĀO DE AÇO SILÍCIO GNO 40X40X120 MM

9. GARANTIA

A NSK Brasil Ltda oferece garantia integral de peças, partes e mão de obra do equipamento pelo periodo de 12 (doze) meses, contados a partir da data de emissão da nota fiscal da fábrica. Para a substituição de peças em garantia com a presença de nosso técnico em sua fábrica, as eventuais despesas de viagem ocorrerāo por conta do cliente. 0 prazo de garantia estabelecido independe da data de instalação do produto e de sua entrada em operação. Na ocorrência de uma avaria em relaçāo à operação normal do produto, o cliente deve comunicar imediatamente por escrito à NSK sobre os defeitos ocorridos.

Para ter direito à garantia, o cliente deve atender às especificaçōes dos documentos técnicos da NSK, especialmente àquelas previstas no Manual de Instalaçảo, Operação e Manutençāo dos produtos e às normas e regulamentaçōes vigentes em cada pals. Nāo possuem cobertura da garantia os defeitos decorrentes de utilização, operação e/ou instalação inadequadas ou inapropriadas dos equipamentos, sua falta de manutenção preventiva, bem como defeitos decorrentes de fatores externos ou equipamentos e componentes nāo fornecidos pela NSK.

A garantia não se aplica se o cliente, por própria iniciativa, efetuar reparos e/ou modificaçōes no equipamento sem prévio consentimento por escrito da NSK. A garantia não cobre equipamentos, partes e/ou componentes, cuja vida útil for inferior ao perído de garantia. Nāo cobre, igualmente, defeitos e/ou problemas decorrentes de força maior ou outras causas que nāo podem ser atribuldas à NSK, por exemplo, mas nāo limitado a: especificaçōes ou dados incorretos ou incompletos por parte do cliente, transporte, armazenagem, manuseio, instalaçāo, operação e manutenção em desacordo com as instruçōes fornecidas, acidentes, deficiências de obras civis, utilizaçảo em aplicaçōes e/ou ambientes para os quais o produto nảo foi projetado, equipamentos e/ou componentes nāo inclusos no escopo de fornecimento da NSK. A garantia nāo inclui os serviços de desmontagem nas instalaçōes do cliente, os custos de transporte do produto e as despesas de locomoção, hospedagem e alimentação do pessoal da Assistência Técnica, quando solicitados pelo cliente.

Os serviços em garantia serāo prestados exclusivamente na Assistência Técnica da NSK. Em nenhuma hipótese, estes serviços em garantia prorrogarāo os prazos de garantia do equipamento.

A responsabilidade civil da NSK está limitada ao produto fornecido, não se responsabilizando por danos indiretos ou emergentes, tais como lucros cessantes, perdas de receitas e afins que, porventura, decorrerem do contrato firmado entre as partes.

Assistēncia Técnica: prezado cliente ao enviar vosso Aquecedor Indutivo EHP MN08 para conserto, revisāo ou reparo por gentileza, enviar junto com o equipamento todos seus componentes, principalmente os bastōes e o sensor magnético.

NSK EHP MN08

Potência	$2,5 \mathrm{kVA}$
Tensão	220 V
Data da Compra	
N° de Série	
Nota Fiscal N°	

10. MODELO DE ESQUEMA ELÉTRICO

[^0]: (1) Painel de Comando
 (2) Núcleo de Aquecimento
 (3) Bastāo de Aquecimento
 (4) Sensor Magnētico de Temperatura

[^1]: *Responsabilidade do cliente.

